I ordered the full BeagleBone Black (Rev A5C) starter kit from Adafruit including the 5V power adapter, prototyping breadboard and backplate and jumper wires, and "cape" PCB. I also recommend a microSD card to boot/install alternative Linux OS distros and a microHDMI cable/adapter and USB keyboard for debugging networking configuration.
BeagleBone Black and ChronoDot RTC on Prototyping Breadboard |
The BBB comes standard with Ångström Linux on its onboard 2GB eMMC flash storage. Nod to the BBB over the RPi here. The Raspberry Pi requires a prepared SD flash card to get started.
During the installation process, I felt motivated to benchmark both the eMMC and my microSD card (ADATA 32GB UHS-I).
Device | Read MB/s |
Write MB/s |
---|---|---|
2GB eMMC | 21.2 | 3.9 |
32GB μSD (BBB) | 4.3 | 1.7 |
32GB μSD (PC USB2) | 19.6 | 19.2 |
The SD interface is incredibly slow. The same card performs tremendously better on my PC monitor's USB2 adapter. I wouldn't want to run the OS from SD anyway, as reliability is always questionable. The microSD interface is clearly intended primarily as a means to load alternative distros onto the eMMC. Even using an SD card for a data/media filesystem takes a bit of effort.
Once running from the eMMC, the BeagleBone Black feels subjectively quick, certainly quicker than the Raspberry Pi. This is no surprise. The TI Sitara contains a more recent, higher-clocked, superscalar processor core with DDR3 RAM support.
My intended use for the BBB is as an internal network services (DHCP, DNS, NTP) and home automation controller. Like the RPi, the BBB doesn't have a battery backed real-time clock (RTC). I easily added one via the ChronoDot RTC and Lemoneer's excellent guide. The BBB has no lack of I/O and should be awesome for monitoring and control. There are even two dedicated PRU cores for true real-time control. I haven't explored this yet, but the PRUs may eliminate much of the need to attach Arduino microcontrollers a la the Raspberry Pi.
For my purposes, the BBB looks to be solidly better than the RPi. That said, the RPi still has some key advantages. There is a huge Raspberry Pi installed base and community. The RPi camera module is appealing. The RPi is decidedly superior for graphics and especially video tasks like XBMC. At these prices, there's something to be said for having one (or more) of each.
Once running from the eMMC, the BeagleBone Black feels subjectively quick, certainly quicker than the Raspberry Pi. This is no surprise. The TI Sitara contains a more recent, higher-clocked, superscalar processor core with DDR3 RAM support.
My intended use for the BBB is as an internal network services (DHCP, DNS, NTP) and home automation controller. Like the RPi, the BBB doesn't have a battery backed real-time clock (RTC). I easily added one via the ChronoDot RTC and Lemoneer's excellent guide. The BBB has no lack of I/O and should be awesome for monitoring and control. There are even two dedicated PRU cores for true real-time control. I haven't explored this yet, but the PRUs may eliminate much of the need to attach Arduino microcontrollers a la the Raspberry Pi.
For my purposes, the BBB looks to be solidly better than the RPi. That said, the RPi still has some key advantages. There is a huge Raspberry Pi installed base and community. The RPi camera module is appealing. The RPi is decidedly superior for graphics and especially video tasks like XBMC. At these prices, there's something to be said for having one (or more) of each.
No comments:
Post a Comment